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Abstract: In the present work, two-phase Rayleigh-Benard problem is simulated by lattice Boltzmann method. Two 

horizontal layers of immiscible fluid are confined in a rectangular cavity. The vertical walls of the cavity are insulated 

while the horizontal walls are maintained at different constant temperatures. Two-phase lattice Boltzmann method is 

used to model hydrodynamic field and a passive scalar approach is implemented to model the thermal field. The 

viscous heat dissipation and compression work done by pressure are neglected. The present model is validated with the 

single-phase Rayleigh-Benard problem and good agreement is observed. The applicability of this new lattice 

Boltzmann model for simulating thermal two-phase problems is the main objective of this study. Furthermore, a 

comprehensive parametric study of the problem is carried out for wide range of different non-dimensional parameters. 

It is found that with increase of Rayleigh number, the fluid motion becomes stronger and the isotherms are more 

distorted. Also with decrease of the ratio of Prandtl number of upper fluid to lower fluid, conduction dominates in the 

upper layer. It is concluded that this new thermal lattice Boltzmann model has a great capability to model thermal two-

phase problems. 
 

Keywords: Thermal lattice Boltzmann method, Two-phase Rayleigh-Benard problem, Passive scalar approach, 

Rectangular cavity. 
 

I. INTRODUCTION 
 

Two-phase Rayleigh-Benard (RB) problem occurs when 

two layers of immiscible fluids which are confined 

between two horizontal parallel plates, are heated from 

below and cooled from above. Due to its practical 

importance in many general science and engineering 

applications, the problem of two-phase RB has been the 

subject of many theoretical, experimental, and numerical 

studies. One can mention, for example, its application in 

freezing or melting, where the onset of thermal convection 

and its stability are coupled with the deformable interface. 

Such is the case for the storage of energy using the melting 

of material. 
  

As compared to the widely studied one-phase problems [1, 

2], not many studies have been reported for two-phase RB 

problems. Lan et al. [3] investigated the stability and 

bifurcation of a partially melted or solidified material in a 

two-phase Rayleigh–Benard problem by a finite-

volume/Newton’s method. Results were presented for a 

variety of parameters of interest, including the Rayleigh 

number, aspect ratio, tilt angle, and also the Prandtl 

number. Binghong et al. [4] numerically studied Rayleigh-

Marangoni-Benard instability in a system of two-layer 

fluids. They analysed the convective instabilities in the 

system of Silicon Oil and Fluorinert liquids. The 

Rayleigh–Marangoni–Benard convective instability in the 

two-layer systems such as Silicone oil/Fluorinert and 

Silicone oil/water liquids were studied by Liu et al. [5].  
 

They performed both linear and nonlinear instability 

analysis to investigate the influence of thermo capillary 

force on the convective instability of the two-layer system. 

Also, some numerical studies [6,7] have been applied to 

two-fluid Rayleigh–Benard problem, but the shape of the 

interface was assumed to be rigid, flat and horizontal. 

 
 

Over the last decade, many researchers have made 

endeavours to enhance the ability of the lattice Boltzmann 

method (LBM) to simulate multiphase fluid flows. 

Furthermore, several lattice Boltzmann multiphase flow 

models have been proposed during this time. Among them 

are the chromo-dynamic model [8], the pseudo potential 

model [9, 10], the free-energy-based approach [11], and a 

consistent multiphase LBM based on the kinetic theory for 

dense fluids [12]. He and Doolen [13] have reviewed these 

methods and argued about the weak points and 

shortcomings of them. Recently, He et al. [14] modified 

the last mentioned two-phase LBM [12] and applied it in 

simulation of two-dimensional Rayleigh–Taylor instability 

without surface tension. Fakhari and Rahimian [15] 

utilized the mentioned LBE proposed by The et al. to 

simulate deformation and breakup of a falling drop under 

gravity. Despite the progress made in simulating 

multiphase and multi component flows, there is a crucial 

missing part which is the lack of a satisfactory thermal 

model for multiphase flows. Most of the published LBM 

multiphase studies have been restricted to isothermal 

systems. The most obvious difficulty for thermal LBM is 

tracking the energy evolution while conserving total 

energy. In general, the available thermal LB models fall 

into three categories: the multi-speed approach, passive 

scalar approach, and hybrid thermal dynamic approach. In 

the passive-scalar approach, the temperature field is 

passively advected by the fluid flow and can be simulated 

as an additional component of the fluid system. This 

means in order to solve for the temperature field in the 

multiphase isothermal LBE framework, one only need to 

solve an auxiliary LBE [16]. This method results in a 

consistent and integrated solution of the mass, momentum 

and energy evolution of the system at the continuum level. 
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However, it has demonstrated that such system suffers 

severe numerical instabilities and has a limited dynamic 

range in temperature. In the passive scalar approach, the 

temperature is treated as a passive scalar, which is carried 

by the flow field but does not affect it [17,18]. This 

approach solves the mass and momentum equations with a 

single distribution function and the energy balance with 

another. In hybrid thermal dynamic approach, the flow 

simulation is decoupled from the solution of temperature. 

Specifically, the flow simulation is accomplished by using 

a thermal LB equation, while the temperature equation is 

solved using a traditional CFD method, such as finite-

different schemes or other means [19, 20]. 
 

Yuan and Schaefer [21, 22] proposed a new and 

generalized lattice Boltzmann model for simulating 

thermal two-phase flow. First they described the 

multiphase isothermal lattice Boltzmann equation model 

proposed by Shan and Chen and the single phase thermal 

LBE model (the passive-scalar approach). Then, by 

combining these two models, the thermal two-phase LBE 

model was proposed. Chang and Alexander [23] 

investigated two-fluid Rayleigh-Benard and Marangoni 

convection by using the hybrid lattice Boltzmann finite-

difference simulation. They extended LBM to include the 

effects of interfacial tension and its dependence on 

temperature and applied it to the mentioned problem. A 

parametric study of the effects of thermally induced 

density change, buoyancy, surface tension variation with 

temperature on interface dynamics, flow regimes and heat 

transfer were presented. 

In the present study, a two-phase LBM proposed by He et 

al. [14] is combined with a passive scalar approach to 

simulate non-isothermal two-phase Rayleigh-Benard 

problem. To the best of our knowledge, the applicability of 

such a combination has not been investigated; therefore, 

the main objective of this study is to see whether this 

Thermal lattice Boltzmann model (TLBM) can be used 

efficiently to model non-isothermal two-phase problems. 

We are particularly interested in studying the effects of 

parameters such as Rayleigh number, Prandtl number and 

parameter ε which is the multiple of thermal expansion 

coefficient and temperature difference. The outline of the 

work is as follows: First, a brief description is given of the 

governing equations, the numerical strategy, and boundary 

conditions. Next, the code validation will be performed 

and then, results are reported and discussed. Finally, some 

conclusions are drawn. 
 

II. PHYSICAL PROBLEM AND MATHEMATICAL 

FORMULATION 
 

The present numerical investigation considers two 

horizontal layers of immiscible fluid, confined in a 

rectangular cavity with aspect ratio of 2 (L/H=2), the 

thickness of the lower fluid layer is hh; the upper layer hl, 

and the thickness ratio of layers is equal by one. The 

vertical walls are insulated while the horizontal walls are 

maintained at different constant temperatures.  
 

The configuration and the boundary conditions are 

illustrated in Fig.1. 

 
 

Fig. 1 Schematic illustration of the problem under 

consideration 
 

Some assumptions have been made in this work, such as: 

 Two layers of fluids are perfectly immiscible. 

 The interface is deformable. 

 Convection is in two dimensions. 

 Fluids are incompressible with Boussinesq 

approximation. 

 The viscous heat dissipation and compression work done 

by pressure are neglected. 
 

An easy way to comply with the conference paper 

formatting requirements is to use this document as a 

template and simply type your text into it. 
 

A. Isothermal Multiphase LBE Model 

The mathematical demonstration of the isothermal 

multiphase LBE can be found in Fakhari and Rahimian 

[15]. Starting from the Boltzmann equation with a proper 

incompressibility approximation, the f evolution equations 

for the index distribution function, which is used to track 

the interface, and the pressure distribution function g, by 

which the hydrodynamic properties are calculated, obtain 

as: 
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where x is the position vector, t stands for time, R is the 

gas constant, T is the temperature, T0 is the average 

temperature, eα denotes the discrete velocity set, u is the 

macroscopic velocity, τ is the relaxation time, and Fs is the 

surface tension force which is calculated using: 
 

 2sF  2 
 

Function Γα takes the following form: 
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We chose δx = δt = 1 hence c=δx/δt=1 and cs
2
=RT0=1/3. 

The microscopic velocities and weight coefficients defined 

as: 
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The equilibrium distribution functions are related to Γα 

through 
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The function ψ(φ) in Eq. (1) represents the non-ideal part 

of equation of state (EOS). Using the Carnahan–Starling 

equation of state, ψ(φ) can be expressed as: 
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Where the parameter a determines the strength of the 

molecular interaction. In order to ensure phase 

segregation, a must be chosen such that a >10.601RT0. In 

this study a = 12RT0 is used. Note that ψ (ρ) in Eq. (1) 

must be calculated from the macroscopic pressure by 
 

  0RTp    8 
 

In 2D, the macroscopic variables are calculated using the 

following relations: 
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The density of the fluid may be obtained by a simple 

interpolation: 
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Where ρl and ρh are densities of light and heavy fluids, 

respectively, and φl and φh are the minimum and 

maximum values of the index function, respectively. In the 

present study φl =0.022838 and φh= 0.250291 are used as 

the limiting values of index function. The kinematic 

viscosity is related to the dimensionless relaxation time 

by: 
 

  tRT  05.0  11 
 

B. Multiphase Thermal LBE Model 

In order to take thermal effects into account, we utilize the 

passive-scalar approach. If the viscous and compressive 

heating effects are negligible, the temperature field 

satisfies a much simpler passive-scalar equation: 
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Where u is the whole fluid velocity, α is the thermal 

diffusivity, and χ is the source term. 

Eq. (12) can be solved in the LB framework by using an 

additional distribution function. 
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It has to be noted that τt(the dimensionless single 

relaxation time for temperature) is calculated using the 

following equation: 
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The important non-dimensional parameters of this 

problem for heavy fluid are such as: 
 

Rayleigh number: 
2
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Where H is the width of the rectangular cavity and 

ΔT=Th−Tc, in which Th and Tc are the bottom and top wall 

temperatures, respectively (Th>Tc). 

The average Nusselt number along the horizontal line of 

y=y0 is defined by: 
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In this model, the fluid dynamics are simulated by an 

isothermal two-phase LBM proposed by He et al. and the 

temperature field is determined by an additional passive-

scalar equation. The coupling of these two parts is through 

a suitably defined body force term in the isothermal LBE 

model.  

In dealing with this body force, the Boussinesq 

approximation is adopted, which assumes that the material 

properties are independent of temperature except in the 

body force term where the fluid density is assumed ρ = ρi 

[1- βi(T-Tref)]. The effective additional thermal buoyancy 

force after absorbing the term of ρig into the pressure can 

be written as: 
 

 gG refii TT  1
 18 

 

Where Tref= (Th+Tc)/2, ρi is either ρh for the heavy fluid at 

Tref or ρl for the light fluid at Tref , βi is the coefficient of 

thermal expansion of fluid i, and g is gravitational 

acceleration. An additional body force term arises due to 

the phase buoyancy force related to the density jump 

across a phase boundary caused by different phases can be 

given as: 
 

 gG ref 2
 19 

 

Where ρref is the average density of the two-fluid system at 

Tref , ( ρref =(ρh + ρl)/2 ). Therefore, the total body force 

term is the sum of phase and thermal buoyancy forces. 

The last thing remained to be done is the implementation 

of the boundary conditions which is indeed very important 
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for our LBM simulation. To that end, at each time step, the 

distribution functions pointing to the inner zone at the 

boundary nodes must be specified. Regarding the no-slip 

boundary condition, bounce-back boundary condition is 

applied on walls for distribution functions of f and g, i.e.: 
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Here α and β indicate opposite directions. 

To determine the unknown temperature distribution 

functions at each step, boundary condition proposed by 

Inamuro et al. [25] is used. 

1) Horizontal walls: Suppose the temperature is fixed as 

TB at the bottom wall. After streaming, h2, h5, and h6 are 

unknowns. Assume these unknown PDFs equal their 

equilibrium distribution given by Eq. (14) with T replaced 

by unknown temperature Tˊ. Summing these three PDFs 

together, we have: 
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Where,uy is the velocity normal to the wall. If we know 

Tˊ, we will be able to solve for h2, h5, and h6. Meanwhile, 

we notice that for the isothermal wall, ∑h= TB. 

Substituting Eq. (21) into this, Tˊ can be calculated as 

follows:  
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Finally, h2, h5, and h6can be obtained by substituting 

Tˊinto Eq. (14). 

2) Vertical walls: A second-order finite difference scheme 

is used to get the temperature on the wall, after finding the 

wall temperature, the same procedure as described in the 

horizontal wall case is used to calculate the unknown 

PDFs. 
 

III. RESULTS AND DISCUSSIONS 
 

To ensure that the LBM code is working properly, the 

problem of single-phase Rayleigh-Benard in a rectangular 

cavity is modelled and compared with the results reported 

by Clever et al. [26], and Prasianakis et al. [27].  

To model single-phase RB problem, we need to choose all 

the dimensionless ratio of the fluid properties in our two-

phase code near to one. Furthermore, the vertical walls are 

removed and periodic boundary condition is implemented. 

Table I compares the average Nusselt numbers obtained in 

the present work with those reported in the literature.  
 

Table I Papers Comparison between Our Numerical 

Results with Published Data for Single-Phase RB Problem 

in a Rectangular 2d Cavity 
 

 

Rayleigh Number 
5×10

3 
10

4 
5×10

4 

Average Nusselt Number at 

Hot Wall 

Clever et al. [26] 2.116  2.661 4.245 

Prasianakis et al. 

[27] 
2.104 2.644 4.133 

Present work 2.121 2.655 4.191 

As it can be seen in table I, in each case, the results are 

considerably consistent with those in the literature and 

these comparisons corroborate the employed numerical 

method, which can produce reliable results.  Also, 

streamlines and isotherms for single-phase RB problem for 

Ra=10
4
, Pr=0.71 are shown in Fig. 2. 

 

 
 

Fig. 2 Streamlines and isotherms for single-phase 

Rayleigh Benard problem for Ra=10
4
, Pr=0.71 

 

Having validated the code, we are now at a stage to 

present our brand new results for two-phase Rayleigh-

Benard problem. Each fluid is characterized by its 

kinematic viscosity νi, thermal expansion coefficient βi, 

thermal diffusivity αi, and volumetric mass density ρi. The 

dimensionless ratio of the fluid properties are 

ρr=ρl/ρh=0.33 (density), νr=νl/νh=1.0 (kinematical 

viscosity), βr=βl/βh=2.0 (coefficient of thermal expansion), 

αr=αl/αh=1.0 (thermal diffusivity). Initially, thickness of 

two-layer fluids is equal, hl = hh = 0.5H. Simulation is 

carried out on a 401 by 201 grid. Grid independence of the 

results has been established. The variations of the average 

Nusselt number at hot and cold walls with changing grid 

size are shown in Table II. 
 

Table II Grid-Dependence Study For Two-Phase 

Rayleigh-Benard Problem With Rah=5×104, Prr=1, 

Εh=0.1 
 

Mesh 201×101 301×151 401×201 501×251 

Nuavg at 

hot wall 
2.326 2.360 2.367 2.370 

Nuavg at 

cold wall 
2.329 2.360 2.364 2.366 

 

The maximum change in this metrics as a result of using 

the finer mesh is only 1.5%. Hence the results can be taken 

to be grid independent. Although the results are trustful by 

201 102 grid, we carried out the simulation on 401 201 

grid to obtain the exact values. It should be noted that with 

increase of Ra, finer mesh should be utilized, otherwise 

the program diverges. 
 

A. Effect of Rayleigh number 
 

First, the effect of the Rayleigh number on streamlines and 

isotherms is investigated. The Capillary number, Prandtl 

number ratio and ε1 are held fixed at 4×10
-4

, 1.0 and 0.1, 

respectively. The Rayleigh number is varied from 2×10
4
 to 

2×10
5
.  Fig. 3 shows the isotherms and streamlines for 

Rah=2×10
4
, 5×10

4
, 10

5
 and 2×10

5
. As it can be seen in this 

figure, each layer is occupied by clockwise and counter 

Clockwise circulating cells and the circulating in the upper 
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Fig. 3 Streamlines and isotherms for Cah = 4.0 × 10
-4

, Prr = 

1.0, εh = 0.1 (a) Rah = 2.0 × 10
4
, (b) Rah = 5.0 × 10

4
, (c) 

Rah = 1.0 × 10
5
, and (d) Rah = 2.0 × 10

5 

 

layer is little stronger than in the lower layer. This 

phenomenon was expected because the upper fluid has 

less density and greater thermal expansion coefficient than 

the lower layer, while their Prandtl numbers and 

viscosities are the same. As a result of greater thermal 

expansion coefficient in the upper layer, the buoyancy 

force is greater in the upper area and also just because its 

density is less, the temperature changes faster which 

causes stronger convection and fluid flow. 

As Rayleigh number increases, the fluid convection 

become stronger and the isotherms are more distorted. 

Furthermore, in each case for Rah<2×10
5
, there are two 

pairs of counter-rotating convection rolls both in lower 

layer and in upper layer, while with increase of Ra, 

number of pairs of counter-rotating convection rolls 

increases both in two layers and this directly leaves a 

major impact on isotherms . This can be explained by the 

following fact. With increase of Ra, viscosity of the fluids 

decreases. As a result, fluids particles can be separated 

from the bottom and top surfaces much easier which 

causes to have more numbers of convection rolls. 

To make sure that the temperature gradient at hot wall 

changes with Ra, Nuavg has been calculated for all cases. 

Its value for Rayleigh numbers of 2×10
4
, 5×10

4
, 10

5
 and 

2×10
5
 are 1.408, 2.367, 3.013 and 3.471, respectively. 

Hence, as the Rayleigh number is increased, the 

temperature gradient near the top wall becomes sharper. 
 

B. Effect of Prandtl number ratio 

To study the effect of Prandtl number ratio on streamlines 

and isotherms, the Capillary number, Rayleigh number 

and ε1 are held fixed at 4×10
-4

, 5×10
4 

and 0.1, respectively 

and the Prandtl number ratio is varied from 1 to 0.33 by 

changing the thermal diffusivity ratio. The results are 

shown in Fig. 4. As it can be observed easily in Fig. 4, 

with decrease of Prr, in the upper layer, temperature field 

gets uniform and fluid convection becomes weaker. This is 

because when the Prandtl number of the upper layer 

becomes less than the lower layer, conduction dominates 

in the upper area while convection dominates more in the 

lower area.  

 
 

Fig. 4 Streamlines and isotherms for Rah = 5.0 × 10
4
, Cah 

= 4.0 × 10
-4

, εh = 0.1 (a) Prr = 1.0, (b) Prr = 0.5, and (c) Prr 

= 0.33    
 

To investigate the effect of Prr on temperature gradient in 

bottom and top walls, average Nusselt numbers at both 

walls are shown in Table III. As can be seen, with 

decrease of Prandtl number ratio, Nuavg at cold wall 

decreases while its value at hot wall increases. 
 

Table III Average Nusselt Number at Hot And Cold Walls 

For Different Values Of Prr With Rah = 5.0 × 104, Cah = 

4.0 × 10-4, Εh = 0.1 
 

Prandtl Number ratio 1.0 0.5 0.33 

Nuavg at hot wall 2.326 2.784 2.902 

Nuavg at cold wall 2.329 1.404 0.965 

 

C. Effect of Parameter ε 

To understand the effect of ε on isotherms and streamlines, 

for Rah=8×10
4
, Cah=4×10

-4
, Prr = 1.0 and different values 

of εh, isotherms and streamlines are plotted in Fig. 5. 
 

 
 

Fig. 5 Streamlines and isotherms for Rah = 8.0 × 10
4
, Cah 

= 4.0 × 10
-4

, Prr = 1.0 (a) εh = 0.067, (b) εh = 0.1, and (c) εh 

= 0.2 

As it is obvious in Fig. 5, with increase of εh, circulation in 

the entire domain becomes stronger. This is because when 

the value of εh increases, the buoyancy force and then the 

fluid motion get stronger.  
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It should be noted that at a fixed value of Rah, with 

increase of εh, the viscosity of the fluid increases which 

impedes the fluid to circulate freely, but its effect isn’t 

comparable with the effect buoyancy force. The effect of 

the parameter ε on the isotherms isn’t distinguishable and 

in this case more data is needed. Therefore average 

Nusselt number at both cold and hot walls are calculated. 

The results are presented in Table IV. 
 

Table IV Average Nusselt Number At Hot And Cold 

Walls For Different Values Of Εh With Rah = 8.0 × 104, 

Cah = 4.0 × 10-4, Prr = 1 
 

ε1 0.067 0.1 0.2 

Nuavg at hot wall 2.784 2.802 2.802 

Nuavg at cold wall 2.795 2.800 2.801 
 

No major change can be seen in average Nusselt numbers 

which indicates that parameter ε1 does not have a major 

impact on the temperature field. 

The flow velocity profiles on the horizontal mid-plane of 

the rectangular cavity for fixed values of Ra, Ca, ε, and Prr 

are given in Fig. 6. 
 

 
 

Fig. 6 Vertical (a) and Horizontal (b) velocity profiles on 

the horizontal midplane of the rectangular cavity for Rah = 

5.0 × 10
4
, Cah = 4.0 × 10

-4
, Prr = 1.0, and εh = 0.1 

 

IV. CONCLUSION 
 

In the present study, simulation of two-phase Rayleigh-

Benard problem in a rectangular cavity has been carried 

out using lattice Boltzmann method. To model the 

hydrodynamic and thermal fields, a new TLBM has been 

proposed which is indeed, the combination of isothermal 

LBM proposed by He et al. and a passive scalar approach. 

The numerical code was validated by the single-phase 

Rayleigh-Benard problem and a good agreement was 

observed. The effects of Rayleigh number, Prandtl number 

ratio and parameter ε were studied. It was found that with 

increase of Ra and ε, the fluid convection become 

stronger.  Moreover, increase of Ra causes the isotherms 

to be more distorted while growth of ε does not leave a 

major impact on the isotherms. Also, with decrease of Prr, 

conduction gets dominated in the upper layer and as a 

result, the temperature field becomes uniform and the fluid 

motion gets weaker in this area. It was concluded that this 

new thermal lattice Boltzmann method is well capable of 

modelling the non-isothermal two-phase problems. 

Furthermore, since this method has the explicit feature and 

no solution of differential equation is involved, using this 

approach is much more convenient than traditional CFD 

methods. 
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